
J. Entomol. Res. Soc., 25(3): 529-544, 2023                                                  Research Article
Doi: 10.51963/jers.v25i3.2445                                                                                           Online ISSN:2651-3579

Utku, A., Ayaz, A., Çiftçi, D., & Akcayol, M.A (2023). Deep Learning Based Classification for Hoverflies 
(Diptera: Sryphidae). Journal of the Entomological Research Society, 25(3), 529-544.

Received:  April 09 2023               Accepted:  August 21, 2023

Deep Learning Based Classification for Hoverflies (Diptera: Syrphidae)

Anıl UTKU1          Zafer AYAZ2          Derya ÇİFTÇİ3*          M. Ali AKCAYOL4

1Faculty of Engineering, Department of Computer Engineering, Munzur University, Tunceli, 
TÜRKİYE

2Department of Management Information Systems, Gazi University, Ankara, TÜRKİYE
3Veysel Karani District, University Housing Complex 3E Block No:8, Siirt, TÜRKİYE

4Faculty of Engineering, Department of Computer Engineering, Gazi University, Ankara, 
TÜRKİYE

e-mails: 1anilutku@munzur.edu.tr, 2zafer@gazi.edu.tr, 3*dcanpolat@gmail.com            
4akcayol@gazi.edu.tr

ORCID IDs: 10000-0002-7240-8713, 20000-0001-7667-7921, 30000-0002-7670-4392 
40000-0002-6615-1237
*Corresponding author

ABSTRACT
Syrphidae is essential in pollinating many flowering plants and cereals and is a family with high 

species diversity in the order Diptera. These family species are also used in biodiversity and conservation 
studies. This study proposes an image-based CNN model for easy, fast, and accurate identification 
of Syrphidae species. Seven hundred twenty-seven hoverfly images were used to train and test the 
developed deep-learning model. Four hundred seventy-nine of these images were allocated to the training 
set and two hundred forty-eight to the test dataset. There are a total of 15 species in the dataset. With the 
CNN-based deep learning model developed in this study, accuracy 0.96, precision 0.97, recall 0.96, and 
f-measure 0.96 values were obtained for the dataset. The experimental results showed that the proposed 
CNN-based deep learning model had a high success rate in distinguishing the Syrphidae species.
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INTRODUCTION
Insects are a class within the arthropods and have an exoskeleton and a 

characteristic body structure consisting of 3 parts (head, thorax, and abdomen) and 
three pairs of legs, compound eyes, and a pair of antennae (Martineau et al, 2017; Xia, 
Chen, Wang, Zhang, & Xie, 2018; Hassan, Rahman, Htike, & Win, 2014). Arthropods 
show more biodiversity than other groups of living things. Arthropods are important 
indicators of ecosystem function. It was used to determine the quality of many habitats 
(agriculture, forest, and meadow) and the fauna richness and diversity of habitats. It 
is also used to determine the extent of arthropod diversity, habitat fragmentation, and 
degradation (Martineau et al, 2017; Xia et al, 2018; Hassan et al, 2014). 

Traditionally, insect species identification is based on morphological identification. 
Taxonomists and trained technicians identify using taxa-specific identification keys 
because species identification requires skills gained through training and experience. 
Although technicians can identify taxa using identification keys in some cases, some 
insect taxa also require experts. Furthermore, the need for sufficient experts and 
technicians in some insect groups delays the insect identification stage. Consequently, 
alternative and accurate identification methods are required, which at least non-experts 
can use (Martineau et al, 2017; Xia et al, 2018).

In biodiversity studies, there are other difficulties, in addition to the difficulty of finding 
an expert insect taxonomist. Some of these are the lack of up-to-date identification 
keys and catalogues, the scattered family or species-specific sources, the lack of 
arrangement of synonymous species names, the difficulty of identifying many taxa, 
and the collection of large numbers of specimens in field studies (Gaston and Neil, 
2004; Gaston and May, 1992; Mound and Gaston, 1993).

These difficulties in taxonomy and identification have led to the development of 
identification methods in the last 30 years (Gaston and Neil, 2004). One of these 
solutions is the automatic identification process. Image-based insect recognition is 
widely used, especially in agriculture, ecology, and biodiversity (Hassan et al, 2014; 
Martineau et al, 2017; Karar, Alsunaydi, Albusaymi, & Alotaibi, 2021).

Fedor, Vaňhara, Havel, Malenovský, & Spellerberg (2009) identified 18 economically 
important common European species of Thysanoptera with 97% accuracy using the 
artificial neural network (ANN) model.

Yang, Ma, Wen, Zhan, & Wang (2015) developed a program to identify species 
with 90-98% accuracy using the wings of Neuroptera. Faria et al (2014) developed an 
identification method with more than 98% accuracy for Anastrepha fruit pest species, 
widely distributed in the American tropics and subtropics, using a multimodal fusion 
approach. The automatic bee identification system (ABIS) made species distinction with 
Support Vector Machine (SVM) using the front wing photograph of the bee (Arbuckle, 
Schröder, Steinhage, & Wittmann, 2001). O’Neill (2008) developed a successful 
invertebrate identification system with (the digital automated identification system) 
DAISY based on eigen-images recognition. 
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Zhu et al (2017) presented a study that explores the application of hybrid 
deep-learning techniques for the automated classification of lepidopteran insect 
images. The research focuses on leveraging the strengths of various deep learning 
architectures, combining them in a hybrid approach to achieve improved accuracy 
in insect classification. By combining Convolutional Neural Networks (CNN) and 
Recurrent Neural Networks (RNN), the authors create a robust framework capable of 
capturing spatial and sequential features in insect images. The study demonstrates 
the efficacy of this hybrid model in accurately classifying lepidopteran insects, offering 
a promising avenue for automating the identification process in entomology and pest 
management applications. The research contributes to advancing the field of insect 
image classification by proposing an innovative approach that effectively addresses 
the complexities associated with recognizing and categorizing diverse insect species.

Thenmozhi and Reddy (2019) proposed a novel approach for accurately classifying 
crop pests by utilizing advanced techniques in deep learning. The study employs 
CNN and transfer learning to enhance the classification accuracy for various crop 
pest species. By leveraging pre-trained models and fine-tuning them on a specialized 
dataset of crop pest images, the authors achieve significant improvements in 
classification performance. Transfer learning enables the network to learn intricate 
features from the data, resulting in robust and effective pest classification. The 
research outcomes demonstrate the potential of combining deep learning techniques 
and transfer learning in addressing complex agricultural challenges such as pest 
identification and management.

Li et al (2021) presented a comprehensive analysis of research endeavours centered 
around utilizing deep learning techniques for insect classification and detection in field 
images, specifically emphasizing applications in intelligent pest management systems. 
The study surveys a broad range of approaches, methodologies, and advancements 
in this domain through a systematic review. The authors identify common trends 
and challenges, highlighting the effectiveness of deep learning models in accurately 
identifying and categorizing insects from images captured in real-world agricultural 
environments. The review underscores the potential impact of such methods on 
improving pest management strategies by enabling timely and targeted interventions. 
By synthesizing the findings of multiple studies, this paper offers valuable insights into 
the state-of-the-art techniques and future directions in intelligent pest management 
using deep learning technologies.

Tiwari et al (2021) present an innovative study focusing on developing and 
implementing customized deep-learning models for real-time classification of insect 
pests in soybean crops. The research addresses the challenges the agricultural 
setting poses, where rapid and accurate insect identification is crucial for effective pest 
management. The authors create models capable of real-time insect classification by 
tailoring deep learning architectures to the specific features of soybean crop images 
and insect pests. This approach demonstrates remarkable accuracy and potentially 
significantly enhances pest detection and control strategies in soybean farming. 
The study showcases the importance of adapting deep learning methods to suit the 
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demands of real-world agricultural applications, providing a valuable contribution to 
intelligent farming and pest management.

Kasinathan, Singaraju, & Uyyala (2020) comprehensively explore the application 
of contemporary machine-learning methods for insect classification and detection 
within field crops. The study delves into utilizing state-of-the-art machine learning 
techniques, such as CNN and SVM, to address the intricate challenge of identifying 
and detecting insects in complex agricultural environments. By harnessing the power of 
these advanced techniques, the authors develop effective models capable of accurate 
insect classification and timely pest detection. The research underscores the potential 
of modern machine learning approaches to revolutionize pest management strategies 
by providing timely insights and enabling proactive interventions in field crop protection.

Butterfly species, which are of great ecological importance, are one of the orders 
that show species richness and are used as indicators in biodiversity studies (Beccaloni 
and Gaston, 1995; Dennis et al, 2008; Dover, Sparks, Clarke, Gobbett, &  Glossop, 
2000; Zamora, Verdu, & Galante, 2007; Zupan, Bužan, Grubar, & Jugovic, 2020). 
Morphological features such as wing shape, structure, and color are used to identify 
butterfly species. Several automatic machine viewings were designed to make 
morphological identification accurate, easy, and faster (Kaya & Kaycı, 2014; Wang, 
Ji, Liang, & Decheng, 2011; Qing et al, 2012; Wen, Guyer, & Li, 2009).

Many methods were used in the literature to classify insects and insect pests 
(Martineau et al, 2017; Xia et al, 2018; Kasinathan et al, 2020). Classification methods 
used in the literature are divided into monolithic, combinations, and instance-based 
groups. Monolithic classification methods are divided into two levels discriminative 
and generative. The combinations method is divided into two basic levels: boosting 
and bagging. Instance-based methods use the k-nearest neighbours (k-NN) algorithm.

In discriminative methods, least-squares approximation (Wen et al, 2009; Wen and 
Zhu, 2010) and fisher linear discriminant (Dietrich and Pooley, 1994; Dietrich, Emigh, 
& Deitz, 1991; Zayas and Flinn, 1998; Tofiski, 2004; Francoy et al, 2008) were used 
in the literature to classify different insect species. However, in cases when the data 
could not be separated linearly, the support vector machine (Qing et al, 2012; Yang et 
al, 2015; Silva et al, 2015; Wang et al, 2012) was applied using the polynomial kernel 
or the radial basis function with standard deviation. Neural network architectures 
were also used as parser classifiers for different insect species by using nonlinear 
activation functions in the literature (Do, Harp, & Norris, 1999; Al-Saqer and Hassan, 
2011; Wang, Lin, Ji, & Liang, 2012; Wen, Wu, Hu, & Pan, 2015; Leow, Chew, Chong, 
& Dhillon, 2015; Silva, Grassi Sella, Francoy, & Costa, 2015; Xia et al, 2018). Decision 
tree-based classifiers were also used to classify insect species (Mayo and Watson, 
2007; Larios et al, 2008; Silva et al, 2015). However, there are no studies to classify 
hoverflies using deep learning. 

The family Syrphidae of the order Diptera are commonly known as “hoverflies” 
or “flower flies.” This family is among the insects that visit flowering plants the most. 
Hoverflies are important pollinators of many plants and crops (Klecka, 2018). The fact 
that most syrphids are effective natural enemies of different insect groups, especially 
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aphids, allows them to be used in biological control studies (Van Driesche, Hoddle, & 
Enter, 2008). Adults of all known syrphid species feed almost exclusively on pollen, 
nectar, or honeydew (Rotheray and Gilbert, 2011) and are usually considered general 
visitors to the flowers (Klecka, 2018). The fact that they are involved in biodiversity 
conservation studies, that they are widely distributed, and that various ecological 
conditions are required for their larvae support the use of this fly family as a bioindicator 
(Sommaggio, 1999; Sommaggio and Burgio, 2014). 

Morphological characters such as abdomen pattern, antenna segment colour, 
and length, leg colour are used in species identification, but male genitalia should be 
examined for definitive identification. (Speight, 2018, 2020).  In recent years, diagnostic 
studies with molecular methods have been conducted, especially in problematic groups 
(Vujić et al, 2015, 2017, 2020; Likov et al, 2020; Kočiš et al, 2018). The identification 
with both classical methods and molecular methods takes a long time.

In recent years, there have been expanded and detailed identification keys for 
identifying Syrphidae species distributed in Europe. However, more than these 
identification keys are needed for the species distributed in Turkey (Speight, 2012, 
2018, 2020).

This study aims to develop a habitus images-based deep learning model for faster 
and more accurate identification of some ecologically important adult Syrphidae 
(Diptera) species. In the literature, there are artificial intelligence-based studies for 
classifying and detecting plant and insect species. However, these studies generally 
focus on identifying some specific species. The datasets used are generally publicly 
accessible. Unlike the studies in the literature, an original dataset was used in this 
study. In the dataset used, there are images of 15 syrphid species. The detailed 
study, which will be carried out in the future, covering the syrphid species distributed 
in Turkey and neighbouring countries, will be preliminary.

DATASET AND MATERIAL
In this study, different images were used for the dipteran family Syrphidae both 

in the laboratory and natural environments. To this end, the photographs of some 
identified syrphid species deposited in Metin Aktaş Zoology Museum of Gazi University 
(MAZMGU, Ankara, Turkey) were taken for syrphid images stored in the museum 
environment. Furthermore, the photographs of these syrphid species photographed 
in their natural environment were taken from the ZMGU database. The number of 
photographs of the specimens with a sting in the museum and those taken from the 
database was insufficient for the training set. Therefore, more images of these species 
were collected from the Internet. The authors collected images using the Google 
search engine. Care was taken to use the photographs of the species mentioned in 
Table 1 from different angles. Seven hundred twenty-seven hoverfly images were 
used to train and test the deep learning model developed in our study. There are a 
total of 15 syrphid species in the dataset. Figure 1 provides specimen photographs 
for some species of hoverflies in the dataset.
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Figure 1. Some photos of the hoverfly species used to train or test the convolutional neural network (from 

left to right: Eristalis tenax, Chrysotoxum vernale, C. bicinctum). 

Four hundred seventy-nine images from the dataset were used for training, and two 
hundred forty-eight images were used for testing. Table 1 gives the names of 
each species used in the dataset and the number of images used in the training 
and test sets. 2/3 of the images in the dataset were allocated to the training set 
and the remaining 1/3 to the test set.

Table 1. Species names in the dataset and the number of images in the training and test set.

Species Names Number of images in the training set Number of images in the test set

Anasimyia contracta Claussen & Torp, 1980 37 18

Anasimyia interpuncta (Harris, 1776) 31 15

Anasimyia lineata (Fabricius, 1787) 29 14

Baccha elongata (Fabricius, 1775) 31 16

Callicera aurata (Rossi, 1790) 33 17

Ceriana conopsoides (Linnaeus, 1758) 22 11

Chrysotoxum arcuatum (Linnaeus, 1758) 33 17

Chrysotoxum bicinctum (Linnaeus, 1758) 31 15

Chrysotoxum vernale Loew, 1841 32 16

Dasysyrphus albostriatus (Fallen, 1817) 32 16

Epistrophe eligans (Harris, 1780) 31 16

Episyrphus balteatus (De Geer, 1776) 37 19

Eristalis interrupta (Poda, 1761) 34 17

Eristalis similis (Fallen, 1817) 33 16

Eristalis tenax (Linnaeus, 1758) 39 20

The total number of samples is 728. 485 samples were used for training and 243 
for testing. Samples from the dataset were randomly selected. It was aimed to prevent 
over-learning by using 10-fold cross-validation. Cross-validation is a technique used 
to assess the performance of a machine-learning model. In this method, the dataset 
is divided into 10 equal-sized subsets. The model is then evaluated 10 times, where 
each time, one of the subsets is used as the test set, and the remaining 9 subsets are 
used as the training set. This process is repeated for each subset so that each subset 
can be the test set once. The results from the 10 evaluations are typically averaged 
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to provide an overall performance metric for the model. This approach helps obtain 
a more robust estimate of the model’s performance by reducing the impact of the 
specific data points in a single train-test split.

DESIGNED DEEP LEARNING MODEL
In this study, a deep-learning model was developed for hoverfly classification. 

After the developed deep learning model was trained, it was aimed to predict the 
species of an adult syrphid image entered from outside. To this end, different deep 
learning architectures were tried, and prediction rates were compared. In this study, 
a CNN-based deep learning model was developed. The detailed architecture of the 
developed model is shown in Figure 2.

Figure 2. Designed deep learning model.

In the developed model, feature extraction was done with convolution and pooling 
layers, and classification values were calculated with a fully connected artificial neural 
network. The probability distribution of the classification categories was determined 
with the last softmax layer.

X nodes were created in the input layer of the developed model. One input node 
was used for each pixel value. Since the images have three channels as Red, Green, 
Blue (RGB), three input layers were used for each image. The developed deep-learning 
model has 15 nodes in the output layer. An output node was used for each species in 
the dataset. During the training, the one-hot-encoding method took the node output 
as 1, representing the species of the entered image, and the others as 0.

In the developed model, values of 0 for padding and 1 for stride were taken in the 
convolution layers. 3x3 filters were used in the convolution layer. The kernel matrix 
used as a filter is shown in Figure 3.
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Figure 3. The kernel used in the convolution layer.

The same kernel was used for all three channels. In the pooling layer, the window 
size was taken as 3x3, and the stride value was selected as one. The rectifier linear 
unit (ReLU) was used as the activation function in the nodes.

EXPERIMENTAL RESULTS
For experimental results, an application was developed in the Google Colabs 

environment using Python programming language and TensorFlow and Keras deep 
learning libraries. For the software interface, ReactJS was used on the frontend and 
a web service created with Python on the backend.

The training of the developed deep learning model was completed after 50 epochs. 
The categorical cross-entropy (CCE) function, which is widely used in multi-class 
classification problems, was used to calculate the loss values.

1 1

1 ( log( ))
N C

ic ic
i c

CCE p y
N = =

= − +∑∑
      

(1)

Here (1), N is the total number of observations, C is the total number of species, 
icp  is the target (correct result) for the thi  observation of species c, and icy is the 

predicted probability distribution. The change in the loss value during the training of 
the model is shown in Figure 4.

Figure 4. Change of loss values according to epoch.

As seen in Figure 4, the loss value decreases rapidly in the initial epochs, then 
continues to decrease slowly and reaches the lowest value at the 50th epoch, becoming 
stable and ending the training. The change in the loss value shows that the developed 
model was designed successfully. The change in the accuracy value during the training 
of the model is shown in Figure 5.
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Figure 5. Accuracy value change.

As seen in Figure 5, the classification accuracy rate increases rapidly in the initial 
epochs, the rate of increase decreases after the 5th epoch, and the increase decreases 
considerably after the 20th epoch. At the 50th epoch, it reaches its highest value and 
becomes stable. The change in the accuracy value shows that the developed model 
is successful.

The true positive (TP), true negative (TN), false positive (FP) and false negative 
(FN) values for the experimental results obtained for 15 syrphid species are given 
in Table 2.
Table 2. TP, TN, FP, and FN values for species in the dataset.

Species names TP TN FP FN

Anasimyia contracta 19 227 2 -

Anasimyia interpuncta 15 232 - 1

Anasimyia lineata 14 233 - 1

Baccha elongata 14 231 1 2

Callicera aurata 17 231 - -

Ceriana conopsoides 10 236 1 1

Chrysotoxum arcuatum 16 230 1 1

Chrysotoxum bicinctum 15 231 1 1

Chrysotoxum vernale 16 232 - -

Dasysyrphus albostriatus 16 231 1 -

Epistrophe eligans 16 232 - -

Episyrphus balteatus 19 229 - -

Eristalis interrupta 17 231 - -

Eristalis similis 16 231 - 1

Eristalis tenax 20 228 - -

The confusion matrix obtained for 15 species is presented in Table 3.
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Table 3. Confusion matrix.
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Anasimyia contracta 19 1 - 1 - - - - - - - - - - -

Anasimyia interpuncta - 15 - - - - - - - - - - - - -

Anasimyia lineata - - 14 - - - - - - - - - - - -

Baccha elongata - - - 14 - 1 - - - - - - - - -

Callicera aurata - - - - 17 - - - - - - - - - -

Ceriana conopsoides - - - 1 - 10 - - - - - - - - -

Chrysotoxum arcuatum - - 1 - - - 16 1 - - - - - - -

Chrysotoxum bicinctum - - - - - - 1 15 - - - - - - -

Chrysotoxum vernale - - - - - - - - 16 - - - - - -

Dasysyrphus albostriatus - - - - - - - - - 16 - - - 1 -

Epistrophe eligans - - - - - - - - - - 16 - - - -

Episyrphus balteatus - - - - - - - - - - - 19 - - -

Eristalis interrupta - - - - - - - - - - - - 17 - -

Eristalis similis - - - - - - - - - - - - - 16 -

Eristalis tenax - - - - - - - - - - - - - - 20

The total number of TP = 240 and FP = 8. The accuracy value was obtained 
as 8/248 = 0.9677. The accuracy, recall, precision, and f-measure values for each 
category are shown in Table 4.
Table 4. Accuracy, precision, recall, and f-measure values for each species.

Class Accuracy Precision Recall F-Measure

Anasimyia contracta 0.99 0.90 1 0.94

Anasimyia interpuncta 0.99 1 0.93 0.96

Anasimyia lineata 0.99 1 0.93 0.96

Baccha elongata 0.98 0.93 0.87 0.89

Callicera aurata 1 1 1 1

Ceriana conopsoides 0.99 0.90 0.90 0.90

Chrysotoxum arcuatum 0.99 0.94 0.94 0.94

Chrysotoxum bicinctum 0.99 0.93 0.93 0.93

Chrysotoxum vernale 1 1 1 1

Dasysyrphus albostriatus 0.99 0.94 1 0.96

Epistrophe eligans 1 1 1 1

Episyrphus balteatus 1 1 1 1

Eristalis interrupta 1 1 1 1

Eristalis similis 0.99 1 0.94 0.96

Eristalis tenax 1 1 1 1
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With the developed model, the accuracy, recall, precision, and f-measure values 
obtained for each species were very high. The lowest accuracy value was 0.98 in 
Baccha elongata. All others were calculated as 0.99 and 1. The lowest precision value 
was 0.90 in Anasimyia contracta and Ceriana conopsoides species. It was found to 
be 1 in 9 out of 15 species. The recall value was the lowest in Baccha elongata with 
0.87. It was found to be 1 in 8 out of 15 species. The lowest f-measure value was 
0.89 in Baccha elongata. It was found to be 1 in 6 out of 15 species. The graph of 
the obtained accuracy, precision, recall, and f-measure values by species is given 
in Figure 6.

Figure 6. Accuracy, precision, recall, and f-measure values. 

The graph of accuracy, precision, recall, and f-measure values for each species is 
given in Figure 7.

Figure 7. Accuracy, precision, recall, and f-measure values for each class. 
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The accuracy, precision, recall, and f-measure values obtained for all species are 
given in Table 5.

Table 5. Average values of accuracy, precision, recall, and f-measure for all species.

Accuracy Precision Recall F-measure
Average 0.96 0.97 0.96 0.96

As seen in Table 5, the model developed for classification has very high accuracy, 
precision, recall, and f-measure values for each species. The average values 
calculated for all classes of the developed deep learning-based classifier were also 
relatively high. In classification problems, the recall value used in the measurement 
of the FN value, in other words, the entries that could not be assigned to the correct 
class targeted in the classification, was relatively high as 0.87 even in the Baccha 
elongate species, in which it was the lowest. The obtained experimental results show 
that the developed deep-learning model successfully classifies hoverflies.

CONCLUSIONS
In this study, there are 728 samples in the dataset used. 2/3 of these samples 

were used for training and 1/3 for testing. Samples from the dataset were randomly 
selected. It was aimed to prevent over-learning by using 10-fold cross-validation. 
Three input layers, Red, Green, and Blue, are used for each image. 3x3 filters are 
used in the convolution layer of the developed model. There are 15 nodes in the 
output layer of the model.

The experimental results showed that the CNN-based deep learning model 
successfully classified hoverflies. Fifteen species from the family Syrphidae are 
successfully classified using the developed image-based recognition system. As with 
other taxonomic groups, the Syrphidae usually has taxonomic characters showing 
subtle differences in genus and species distinction. Although the characters at the 
microscopic level are used in the distinction of Syrphidae species (eye bristles, 
antennal segment lengths, thorax bristles), the macroscopic level is also used in the 
characters (color of the legs (femura, tibiae, tarsomers), abdomen coloration and 
pattern) (Speight and Sarthou, 2012). The high success rate in the image-based 
recognition system developed in our study is that body coloration and patterning in the 
abdomen tergites are the dominant characters in the distinction at the species level. 
Although we could not find a consistent error for species in this study, this program 
can misidentify species that are morphologically very similar and have similar patterns 
and coloration because the microscopic character is used together with expert opinion 
to distinguish such species.

This study showed that CNN is a suitable application for distinguishing Syrphidae 
species. Moreover, image-based recognition systems can be developed to identify 
more Syrphidae species and species belonging to similar dipteran families. 
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DISCUSSIONS
This study developed a CNN-based model to classify Syrphidae species, which play 

an essential role in pollinating flowering plants and grains. Syrphidae is a family with 
high species diversity in the order Diptera and is used in biodiversity and conservation 
studies. This is the first study on the classification of Syrphidae species in the literature. 
There are studies on the classification of insect species in the literature. However, 
these studies generally focus on classifying certain types using public datasets. An 
original data set was used in this study.

Experimental results show that the developed model has a very successful 
classification performance. Increasing the sample size used in the study and the 
image quality of the used samples will increase the model’s success. The quality of 
the images used in this study is high. Expanding the dataset with new images will 
contribute to the model’s training process. In addition, a more successful classification 
performance can be achieved with hybrid deep learning models to be developed.
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