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ABSTRACT
The brown planthopper, Nilaparvata lugens (Stål) is a destructive rice pest found in almost all the 

rice-growing areas across the globe. In pest management strategies, insecticides are the vital element 
to control this insect pest. But recently their heavy use poses a risk of control failure because of the 
development of insecticide resistance. Quick insecticide resistance development nature in N. lugens 
intrigued scientists to understand the complex resistance mechanism(s), side by side pledge the 
importance of regular monitoring to know the trend of resistance development. Resistance mechanisms 
like, target-site insensitivity and enhanced activity of detoxifying enzymes, have been extensively 
studied and identified in governing the resistance development of N. lugens. Both the field collected 
and laboratory selected pest populations were tested against commonly used insecticides to detect 
insecticide resistance ratio. In this review, recent findings of resistance mechanisms, candidate genes 
those contribute in resistance development have been summarized. We also provide an insight into the 
metabolic resistance mechanisms that confer significant levels of resistances and the current status 
of insecticide resistance in N. lugens. This review will help to get a clearer view on present research 
directions of insecticide resistance in N. lugens. 
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INTRODUCTION
Brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) is a 

major rice pest that causes significant losses in rice-growing areas (Masaya et al, 
2009). Since 2003, many Asian countries have seen frequent outbreaks of N. lugens 
(Bottrell & Schoenly, 2012). Chemical control is the key element of integrated pest 
management strategies to control rice insect pests (Min, Lee, Choi, Lee, & Kwon, 
2014). Because of higher efficiency, neonicotinoid is widely used to control many 
insect pests including N. lugens (Matsuda, Ihara, & Sattelle, 2020; Datta et al, 2021a). 
However, it has developed low to moderate levels of resistance to neonicotinoids. 
Overdose and constant use of insecticides considers as the key reason for the fast 
resistance development in N. lugens (Matsumura et al, 2018). 

Research on insecticide resistance in N. lugens has been doubled in recent years, 
and studies were attempting to explain complex mechanisms conferring resistance. 
The study of insecticide resistance mechanisms is vital to manage resistance problems, 
to reduce the threat of pest outbreak and to introduce more improved control measures. 
Numerous resistance mechanisms have been found governing insect resistance 
to insecticides (Garrood et al, 2016). Among the two mostly reported resistance 
mechanisms, the enhanced metabolic detoxification of xenobiotics has been commonly 
studied in N. lugens (Latif, Omar, Tan, Siraj, & Ismail, 2010). Increased activities of 
detoxifying enzymes have been constantly found in resistant N. lugens. Through gene 
amplification it has been proved that multiple resistance genes are directly correlated 
with enhanced detoxifying enzyme activities (Hamada, Stam, Nakao, Kawashima, & 
Banba, 2020). Cytochrome P450 monooxygenase (P450) displayed significant roles in 
conferring insecticide resistance in N. lugens in response to neonicotinoids (Hamada 
et al, 2020). Functional analysis through RNA interference (RNAi) confirmed the 
function of multiple P450 genes (Jin et al, 2019). The levels of enhanced detoxifying 
enzyme activities and the expression levels of the genes encoded for the enzymes 
vary with the insecticide resistance levels (Mao et al, 2020). 

Currently, N. lugens developed resistance to frequently used insecticides and 
there are threats of future resistance development to less used insecticides (Fujii et 
al, 2020; Matharu & Tanwar, 2020). Previous findings suggest extremely higher levels 
of resistance to imidacloprid, a principal neonicotinoid insecticide, and potentiality to 
develop resistance to other insecticides of the same group (Datta et al, 2021a). This 
review mainly focuses metabolic resistance mechanism as one of the main mechanism 
to confer insecticide resistance in N. lugens. Side by side, the status of resistance 
to commonly used insecticides developed in this pest has been shortly described. 

Nilaparvata lugens a destructive pest of rice 
One of the major destructive dominant herbivore of rice is N. lugens that is found 

in all rice-growing areas of Indonesia, Thailand, India, Japan, Vietnam, China, 
Bangladesh, Solomon Island and north-eastern Australia, the Philippines, and Malaysia 
(Masaya et al, 2008; Latif et al, 2010; Ali et al, 2014; Hereward et al, 2020). The long 
distance migratory behavior and population development patterns sometimes make 
the control measure more complex and most of the rice field of different places became 
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vulnerable to the pest (Khoa, Thang, Liem, Holst, & Kristensen, 2018). It damaged 
rice plant by sucking sap during different growth stages of rice plant, which caused 
wilting and drying, known as “hopper-burn” and it also, transmits several viral diseases 
(Liao et al, 2019). The outbreaks of N. lugens in several rice producing countries have 
frequently occurred in the last few decades, which is threatening food security for the 
growing populations (Bottrell & Schoenly, 2012). 

Evolution of insecticide resistances in N. lugens 
Resurgence of N. lugens was thought to be associated with different factors likely use 

of synthetic insecticides, fertilizers and susceptible rice varieties (Uddin, Islam, Jahan, 
Ara, & Afrin, 2020). Precautions have been taken to control this pest and a significant 
amount of money have been invested to improve pest control strategies, for instance, in 
Indonesia alone 100 million US dollar have been invested to control this pest per year 
(Cheng, 2015). However, the investments to improve control programs sometimes failed 
to uphold the destruction of rice yield as pest outbreaks in recent years occurs in some 
Asian countries. Chemical control became the only means to control this destructive 
insect pest in rice farming practices and since then the use of insecticides considers as 
the vital element to control this pest (Bottrell & Schoenly, 2012). However, heavy use 
of common insecticides poses enormous risks not only to environmental elements but 
the reduced toxicity of insecticides against N. lugens (Mu et al, 2016). 

Insecticide Resistance Action Committee (IRAC) defined insecticide resistance 
as the repeated failure of a chemical product to damage insect pest population 
in an expected level even after applying recommended doses (Sparks & Nauen, 
2015). Evolution of insecticide resistance in insect pest has become a threat in 
choosing efficient insecticide for its management (Bolzan et al, 2019). Even after 
the continuous use of insecticides, farmers witnessed the resurgence of N. lugens; 
studies later find out the development of low to high level of resistance in N. lugens 
(Cheng, 2015; Uddin et al, 2020). The demand and use of synthetic insecticides to 
control N. lugens never been clogged but increased proportionately in some places, 
which extends the resistance problems. It has been reported that N. lugens field 
populations already developed moderate to extremely high level of resistance to 
imidacloprid, thiamethoxam, buprofezin, dinotefuran (Liao et al, 2021). In addition, 
the cross-resistance between different insecticides among the field populations is also 
posing a threat to select competent insecticide classes to control BPH (Mu et al, 2016). 

Mechanism of insecticide resistance
Development of insecticide resistance relies on particular resistance mechanisms 

of insects. Four resistance mechanisms have been reported in insect pests, however, 
according to previous studies two major mechanisms are mainly contributing in 
developing resistance in N. lugens, target-site modifications and metabolic resistance. 
Majority of the research described metabolic resistance mechanisms as the principal 
mechanism to induce resistance in this pest (Mao et al, 2020). Here, both of the 
reported mechanisms are discussed, although metabolic mechanisms cover most of 
the portion of this review. 
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Target-site insensitivity
Several insecticides affect specific target sites of insect nervous system. It has been 

found that resistant insect shows modifications in their target sites to confer resistance 
against particular insecticide (Steinbach et al, 2015). In two nicotinic acetylcholine 
receptor (nAChR) subunits, point mutations (Y151S) have been identified in association 
with imidacloprid resistance in N. lugens (Zewen et al, 2005). However, the mutations 
in target site have only been found in laboratory selected imidacloprid resistant-strain 
and never been reported in resistant field populations of N. lugens (Zewen et al, 2005; 
Liang et al, 2018; Sanada-Morimura et al, 2019). For this reason most of the recent 
research only emphasizes complex metabolic resistance mechanisms that found both 
in lab selected strain and field collected N. lugens. These findings shed light to study 
insecticide resistance mechanisms in this pest in response to distinct insecticide classes. 

Metabolic resistance mechanism
Metabolic resistance is the principal mechanism and widely studied topic in N. 

lugens. Its resistance evolution to common insecticides is mostly attributed to the 
enhanced detoxification of enzymes, and expression of resistance genes encoded 
for detoxifying enzymes (Wen, Liu, Bao, & Han, 2009). The metabolic resistance 
mechanisms reported in previous findings have been summarized.

Metabolic enzyme activities
The involvement of a metabolic enzyme in detoxifying insecticide has proved by 

measuring the enhanced levels of detoxifying enzyme activities in insects. The elevated 
activities of metabolic enzymes P450, esterases (EST) and glutathione S-transferases 
(GST) have been reported in several insect species resistant to insecticides (Bass & 
Field, 2011; Liang et al, 2018). Through the synergistic and enzymatic assay, increased 
activity of detoxifying P450 enzyme has been found in many insects in response to 
neonicotinoids insecticides (Chen, Shan, Liu, Shi, & Gao, 2019). Similarly, insecticide 
resistance of N. lugens against different insecticides is mostly controlled by increased 
enzyme activity, especially P450 enzyme. The level of P450 was significantly high in N. 
lugens resistant to imidacloprid, thiamethoxam, and dinotefuran compare to susceptible 
pest (Sun, Gong, Ali, & Hou, 2018). Detection of enhanced P450 activities in resistant 
N. lugens strain, suggesting P450-mediated detoxification occurs in imidacloprid-, 
thiamethoxam-, and dinotefuran-resistant strains. In contrast, significantly increased 
activities of two detoxifying enzymes, P450 and EST, were found in nitenpyram and 
sulfoxaflor selected strain, but P450 might be the major detoxifying enzyme (Liao et 
al, 2019). Although the finding of enzymatic assay was consistent with the synergistic 
assay, characterization of gene expression and functional validation of specific gene are 
needed to confirm the xenobiotic mechanism in response to nitenpyram and sulfoxaflor. 
The elevated levels of EST activities have been reported higher in chlorpyrifos-resistant 
strain compare to susceptible strain of N. lugens (Lu et al, 2017). This report suggests 
that enhanced EST activity could account for resistance to organophosphate insecticides. 
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Characterization of resistance genes
Studies have successfully characterized gene expression that revealed significant 

information of metabolic enzymes associated with detoxification of insecticides 
(Table 1). A number of metabolic resistant genes individually and/or in group have 
been reported overexpressed in resistant N. lugens through gene amplification, 
transcriptional up-regulation and genome sequencing (Zhang et al, 2016a; Xu et al, 
2017). Three major metabolic detoxification genes have been reported in N. lugens 
that involves in the detoxification of insecticides (Liang et al, 2018). Among them 
P450s are considered as the principal contributor to confer resistance that found in 
all the living organisms (Wang et al, 2018). Reported P450 genes are belonged to 
microsomal CYP4, CYP6, CYP9, and mitochondrial CYP12 families and are mostly 
correlated with the resistance development to neonicotinoids (Feyereisen, 1999; Scott, 
1999). Many researchers have also been found several P450s involvement in N. 
lugens resistance to distinct classes of insecticides. Overexpression of one or multiple 
P450 genes have been reported in this pest resistance to imidacloprid, thiamethoxam, 
dinotefuran, buprofezin, nitenpyram, sulfoxaflor, clothianidin and etofenprox (Pang 
et al, 2014; Garrood et al, 2016; Liao et al, 2021; Datta et al, 2021b). Similarly, the 
up-regulation of esterase gene NlCarE was found related to chlorpyrifos resistance in 
N. lugens (Lu et al, 2017). It is obvious that P450s as the superfamily has repeatedly 
been verified that confer insecticide resistance in N. lugens. Recent advances in 
research have been very useful to generate knowledge about the resistance genes 
those are significantly contributing in insecticide metabolism in N. lugens.

Functional validation of resistance genes
Bao et al, (2016) characterized imidacloprid metabolism by determining CYP6ER1 

and CYP6AY1 expression in vitro through recombinant P450 proteins. Similarly, using 
the recombinant P450 proteins, enzymatic activities of five P450s were determined to 
analyze their roles in developing resistance to imidacloprid (Zhang, Yang, Sun, & Liu, 
2016b). Among the five P450 proteins, the fastest metabolite formation was observed 
in incubation with CYP6CW1, CYP6AY1, CYP6ER1, and CYP4CE1 (Zhang et al, 
2016b). These approaches confirmed the contribution of these genes in resistance 
development in N. lugens. 

The overexpression of metabolic detoxification genes displayed its significance in 
resistance development in N. lugens, which implies the importance to characterize 
individual gene function involving in resistance. Studying the metabolic mechanisms 
has been improved in this genomic era with the advancement of the molecular 
tools and techniques including gene silencing technique, RNAi and CRISPR/Cas9 
(Unniyampurath, Pilankatta, & Krishnan, 2016; Zhu, Chereddy, Howell, & Palli, 
2020). Silencing of overexpressed P450 gene, CYP6ER1, in lab strain of N. lugens 
increased susceptibility to imidacloprid, thiamethoxam, dinotefuran, nitenpyram 
and sulfoxaflor, which demonstrated the involvement of CYP6ER1 as the functional 
gene in resistance development (Jin et al, 2019; Liao et al, 2019). Although most 
of the findings outlined CYP6ER1 as the key P450 gene contributes in conferring 
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insecticide resistance in N. lugens, overexpressed CYP6AY1 is another important 
P450 gene reported by several authors. The in vivo study through RNAi reduced the 
mRNA levels of CYP6AY1 in imidacloprid resistant strain and increased the mortality 
rate of the pest after the imidacloprid application (Bao et al, 2016; Ding et al, 2013). 
This indicated that CYP6AY1 dsRNA feeding successfully suppressed insecticide 
resistance to imidacloprid and confirmed the role of CYP6AY1 gene in insecticide 
resistance. The overexpression of P450 genes has also reported in N. lugens resistant 
to pyrethroid insecticides. Multiple P450 genes were silenced through RNAi that 
cause major changes in resistance levels in BPH against etofenprox, a non-ester 
pyrethroid insecticide (Sun, Yang, Zhang, & Liu, 2017). The functional analyses of 
resistance genes by knocking down of multiple genes have considerably extended 
our understanding on the complex mechanisms of conferring resistance to different 
group of insecticides. Additionally, the expression level of NlCarE was significantly 
reduced after dsRNA injection in chlorpyrifos resistant N. lugens (Lu et al, 2017).  
Table 1. Genetic characterization of insecticide resistance mechanism in Nilaparvata lugens.

Insecticide Population/Strain Methods Resistance gene(s) Reference

Imidacloprid1 Field qRT-PCR CYP6ER1 Garrood et al, (2016)

Imidacloprid Field qRT-PCR, RNAi CYP6ER1, CYP6AY1 Bao et al, (2016)

Imidacloprid, 
Thiamethoxam1, 
Dinotefuran1

Lab qRT-PCR, RNAi CYP6ER1 Sun et al, (2018)

Imidacloprid Lab qRT-PCR, RNAi CYP6ER1, CYP6AY1, CYP6CE1, 
CYP6CW1 Zhang et al, (2016b)

Imidacloprid Field qRT-PCR CYP6ER1, CYP6AY1, CYP6CS1 Zhang et al, (2016a)

Imidacloprid Field qRT-PCR, RNAi, 
transgenic5 CYP6ER1 Pang et al, (2016)

Imidacloprid Lab qRT-PCR, RNAi CYP6AY1 Ding et al, (2013)

Imidacloprid, 
Buprofezin2 Field qRT-PCR CYP6AY1 Pang et al, (2014)

Imidacloprid Lab qRT-PCR, RNAi CYP6ER1 Yang et al, (2016)

Nitenpyram1 Lab qRT-PCR, RNAi CYP6ER1 Mao et al, (2019)

Sulfoxaflor1 Lab qRT-PCR, RNAi CYP6ER1 Liao et al, (2019)

Chlorpyrifos3 Lab qRT-PCR, RNAi NlCarE Lu et al, (2017a)

Clothianidin1 Lab qRT-PCR, RNAi CYP6ER1 Jin et al, (2019)

Etofenprox4 Lab qRT-PCR, RNAi CYP6FU1, CYP425A1,CYP6AY1 Sun et al, (2017)

Imidacloprid, 
Thiamethoxam, 
Dinotefuran, 
Clothianidin1, 
Buprofezin

Field qRT-PCR CYP6AY1, CYP6ER1 Liao et al, (2021)

Imidacloprid, 
Thiamethoxam, 
Dinotefuran,
Buprofezin

Field qRT-PCR CYP6ER1 Datta et al, (2021b)

1Neonicotinoids, 2Insect growth regulator, 3Organophosphate, 4Pyrethroids, 5Transgenic approach utiliz-
ing the GAL4/UAS system of D. melanogaster
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The Drosophila transgenic technique is another approach to determine functions 
of genes in insect resistance to insecticides (Daborn et al, 2012; Pang et al, 2016). 
The expression of CYP6ER1 of N. lugens in Drosophila evolved significant levels of 
resistance to imidacloprid compare to dinotefuran for the variant of CYP6ER1 gene 
(Hamada et al, 2020). This provides important information on the in vivo metabolism 
of imidacloprid resistance by the variants of CYP6ER1.

The metabolic resistance mechanism has been depicted with the possible 
transcription factors regulating gene expression in Fig. 1. Several signaling pathways 
were found to mediate the up-regulation of detoxification enzymes in insects and play 
a key role in metabolic resistance to insecticides (Amezian, Nauen, & Le Goff, 2021). 
The signaling pathways includes transcription factors (TF) namely, cap “n” collar (CncC), 
musculoaponeurotic fibrosarcoma (MaF), aryl hydrocarbon receptor (AhR), G-protein 
coupled receptor (GPCR) (Amezian et al, 2021). The expression of two P450 genes 
contributes to insecticide resistance in Drosophila regulated by the transcription factors 
CncC and Maf (Gaddelapati, Kalsi, Roy, & Palli, 2018; Bo et al, 2020). However, little is 
known about these gene regulatory factors in gene expression in insects. Further studies 
are needed to describe the principal regulatory routes of detoxification gene expression 
in N. lugens. It is necessary to clarify what are the specific functions of those genes, what 
is the exact number of genes, how the genes are correlated with insecticide resistance 
ratio, and what are the functions that regulate the overexpression of resistance genes.

Fig. 1. Flowchart of the development of metabolic resistance mechanism in BPH started in cytoplasm of 
insect cell. Here, imidacloprid represents the neonicotinoids insecticide group. Through translocation 
Nrf2 with Keap1 transferred to nucleus. Cyt-cytoplasm; Nrf2-nuclear factor erythroid 2; Keap1-
kelch-like ECH-associated protein 1 pathway; XRE-xenobiotic response element. The description of 
transcription factors and their mechanism in insect pests may found in Palli, 2020.

Current status of insecticide resistance
Since the first outbreak of N. lugens, the pest distribution and the population 

development of the pest has been frequently reported in many studies (Bottrell 
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& Schoenly, 2012). Additionally, the status of the insecticide resistance has been 
monitored by different authors, providing details information, which would help forecast 
pest outbreak hence to improve pest management strategies (Liao et al, 2021). The 
insecticide resistance status in N. lugens has been detected either by topical application 
of insecticides or by rice stem dipping method (Priyadharshini, Muthukrishnan, Sathiah, 
& Prabakar, 2020). Studies used field collected pest populations to detect insecticide 
resistance, which helped to know the exact scenario of the levels of resistance. In 
contrast, laboratory selected strain has been used to monitor pests ability to develop 
resistance in controlled condition, to provide information on cross-resistance among 
insecticides and to compare with field-evolved resistance. The resistance ratio of 
N. lugens to commonly used insecticides reported during 2011 to 2021 has been 
presented in Fig. 2. The data was collected from multiple studies and the resistance 
ratio to tested insecticides has been summarized (research findings from where the 
data was extracted mentioned in Supplementary file). 

Fig. 2. Previously reported resistance ratio of Nilaparvata lugens field populations to several tested 
insecticides. The resistance ratio (ranges and calculation) was described by Wang et al, (2018). 
Data of resistance ratio of N. lugens field populations is summarized from eighteen different research 
articles published during 2011-2020.

Resistance to organophosphates and carbamates
Organophosphates and carbamates insecticides target AChE inhibitor of small 

brown planthopper and have been using to control the pest after the World War II 
(Kwon, Kim, Jeong, & Lee, 2019). Common insecticides of these two groups includes 
chlorpyrifos, diazinon, carbufuran, carbosulfan and fenobucarb, has been using to 
control N. lugens field populations. However, the threat of N. lugens resurgence is 
still presence as low to high levels of resistance to chlorpyrifos has been documented 
(Fig. 2) (Lu et al, 2017; Yang & Lai, 2019).

Resistance to neonicotinoids
Imidacloprid a widely used neonicotinoid has become an effective solution to control 

many chewing and sucking pest, including N. lugens since 1991 (Masaya et al, 2008). 
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However, the continuous and overuse of the insecticide faced a challenge when reduced 
toxicity of imidacloprid has been reported in N. lugens field populations across Asian 
countries (Bao et al, 2016). High to extremely high levels of resistance to imidacloprid 
has been reported for several consecutive years in China, Japan, Vietnam, Bangladesh 
and Thailand (Wang et al, 2014; Bao et al, 2016; Garrood et al, 2016; Sanada-Morimura 
et al, 2019; Datta et al, 2021b). Other neonicotinoids such as thiamethoxam, dinotefuran, 
sulfoxaflor, clothianidin, cycloxaprid, and nitenpyram were effective, but in recent year’s 
development of resistance in N. lugens to these insecticides also reported (Pang et al, 
2014; Mu et al, 2016; Fang et al, 2018; Sun et al, 2018; Mao et al, 2019; Zhang et al, 
2020). These findings suggest that reduced toxicities of several neonicotinoids have 
been threatened pest control measure of N. lugens.

Resistance to other insecticides
Resistance to insecticides belong to pyrethroids (pymetrozine, etofenprox), and 

insect growth regulator (buprofezin) have been found in N. lugens in recent years 
(Yang et al, 2016; Sun et al, 2017; Liao et al, 2019; Datta et al, 2021b). In contrast, 
a new mesoionic insecticide triflumezopyrim still shows its efficiency to control N. 
lugens (Liao et al, 2021). Although the levels of resistance to these insecticides are 
comparatively low than neonicotinoids, there is a threat of complete control failure in 
future by these insecticides. Therefore, it is important to monitor insecticide resistance 
development in rice insect pests regularly. 

Resistance selections - method to understand resistance potentiality
Various experiments designed to find out how quick insecticide resistance could 

increase or reduce in an insect pest in response to a single or multiple insecticides 
and what are the responses of the pest against different insecticides after certain 
generations of rearing in laboratory condition (Jin et al, 2019; Liao et al, 2019). For 
these objectives, researchers, rear the pest with insecticides termed as resistance 
selection. This method helps to understand the potentiality of resistance development 
in N. lugens, to advance molecular study to gather more knowledge on resistance 
mechanisms, and suggests rational use of insecticides. Susceptible N. lugens 
developed low to high levels of resistances to imidacloprid, etofenprox and clothianidin 
when resistance selection was done with the same insecticide for several generations 
(Zhang et al, 2015; Sun et al, 2017; Jin et al, 2019). Resistance selection method 
helps to get a highly resistant strain to a single insecticide that make it possible to 
conclude the contribution of a sole resistance mechanism in developing resistance. 

CONCLUSIONS
In last decades side by side the resurgence of N. lugens, use of insecticides has 

also been significantly increased. This major rice pest already developed low to high 
levels of resistances to commonly used insecticides in most of the rice producing 
Asian countries. Increased detoxifying enzyme activities have been found as the 
principal resistance mechanism in N. lugens. Enhanced activities of P450, EST, and 
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GST have been significantly contributes in evolution of resistance to neonicotinoids, 
pyrethroids, insect growth regulator and to organophosphate insecticides. Thus it 
shows that this pest have the potentiality to develop resistance to multiple insecticides 
in field condition. Hence, many studies have been carried out to understand particular 
molecular mechanisms presence in N. lugens. To delay or abandoned the resistance 
development in this pest, rotational use of insecticides, introducing new class of 
insecticides, understanding multi-resistance mechanism and adapting the insecticide 
resistance management strategies are recommended.
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